Chemistry Test Paper
 UNIT: SOLUTIONS

Time: 90 minutes

General Instructions:

(1) All questions are Compulsory.
(2)The question paper consists of 15 questions divided in to four sections $A, B, C \& D$
(3) Section A contains 2 questions of 1 mark each.

Section B contains 5 questions of 2 marks each.
Section C contains 6 questions of 3 marks each.
Section D contains 2 questions of 5 marks each.

Section -A

1. State Henry law with its mathematical expressions?
2. Define colligative properties.

Section -B

3. An antifreeze solution is prepared from 222.6 g of ethylene glycol. $\mathrm{C}_{2} \mathrm{H}_{4}(\mathrm{OH})_{2}$ and 200 g of water. Calculate molality of solution. If the density of the solution is $1.072 \mathrm{~g} / \mathrm{ml}$ then what shall be the molarity of the solution?
4. Explain along with diagrams the conditions for the Non ideal solutions exhibiting Positive deviations. Write some examples of Non ideal solutions exhibiting Positive deviations.
5. What are Azeotropes? Give one example each of minimum boiling and maximum boiling azeotropes.
6. Calculate the mass of a nonvolatile solute (molecular mass $=40$) which should be dissolved in 114 g octane to reduce its vapour pressure to 80%.
7. What is value of Van't Hoff's factor when the solute undergoes (a) association (b) dissociation?

Section -C

8100 mg of a protein is dissolved in enough water to make 10 ml of a solution. If this solution has an osomotic pressure of 13.3 mm Hg at $25^{\circ} \mathrm{C}$, what is the molar mass of protein? $\left(\mathrm{R}=0.0821\right.$ Latmmol $^{-1} \mathrm{~K}^{-1}$ and $760 \mathrm{mmHg}=1$ atm $)$
9. Heptane and Octane form ideal solution.At 373 K , the vapour pressures of the two liquid components are 105.2 kPa and $\mathbf{4 6 . 8} \mathbf{k P a}$

10 Boiling point of water at 750 mHg is $99.63^{\circ} \mathrm{C}$. How much sucrose is to added to 500 g water such that it boils at $100^{\circ} \mathrm{C}$.
11. What is osmosis, osmotic pressure \& reverse osmosis?
12. Amongst the following compounds, identify which are insoluble, partially soluble and highly soluble in water?(i) phenol (ii) toluene (iii) formic acid(iv) ethylene glycol (v) chloroform (vi) Pentanol.
13. If \mathbf{N}_{2} gas is bubbled through water at 298 K , how many millimoles of \mathbf{N}_{2} gas would dissolve in 1 litre of water .Assume that \mathbf{N}_{2} exerts a partial pressure of 0.987 bar .Given that Henry's law constant for \mathbf{N}_{2} at 293 K is 76.48 bar.

Section -D

14.Two elements $A \& B$ form compounds having molecular formula $A B_{2} \& A B_{4}$. When dissolved in 20 g of $C_{6} H_{6}, 1 \mathrm{~g} A B_{2}$ lowers the freezing point by $2.3 \& 1.0 \mathrm{~g} \mathrm{AB}_{4}$ lowers it by 1.3 K . The molar depression constant for benzene is $5.1 \mathrm{Kg} \mathrm{mol}^{-1}$. Calculate atomic mass A \& B.
15. 19.5 g of $\mathrm{CH}_{2} \mathrm{FCOOH}$ is dissolved in 500 g of water. The depression in the freezing point of water observed is 1.00 C . Calculate the van't Hoff factor and dissociation constant of fluoroacetic acid.)

Chemistry Test Paper
Unit-3: Electrochemistry
Time: 90 minutes
M.M. 40

General Instructions:

(1) All questions are Compulsory.
(2)The question paper consists of 15 questions divided in to four sections $A, B, C \& D$
(3) Section A contains 2 questions of 1 mark each.

Section B contains 5 questions of 2 marks each.
Section C contains 6 questions of 3 marks each.
Section D contains 2 questions of 5 marks each.

Section A

1. How much electricity in terms of Coulomb is required to reduce 1 mol of $\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}$ to Cr^{3+}.
2. What is Fuel Cell?

Section B
3. A solution of CuSO_{4} is electrolysed using a current of 1.5 amperes for 10 minutes. What mass of Cu is deposited at the cathode? (Atomic mass of $\mathrm{Cu}=63.7$)
4. Calculate the equilibrium constant for the reaction $\mathrm{Cu}(\mathrm{s})+2 \mathrm{Ag}^{+} \Leftrightarrow \mathrm{Cu}^{+2}+2 \mathrm{Ag}(\mathrm{s}) \quad \mathrm{E}^{\circ} \mathrm{Cu}^{2+} / \mathrm{Cu}=+0.34 \mathrm{~V}, \mathrm{E}^{\circ} \mathrm{Ag}^{+} / \mathrm{Ag}=+0.80 \mathrm{~V}$.
5. Write the Nernst equation and emf of the following cells at $298 \mathrm{~K}: \quad \mathrm{Sn} / \mathrm{Sn}^{2+}(0.050 \mathrm{M}) / / \mathrm{H}^{+}(0.020 \mathrm{M}) / \mathrm{H}_{2}(\mathrm{~g}) / \mathrm{Pt}(\mathrm{s}) \mathrm{E}_{\mathrm{Sn}}{ }^{2+} / \mathrm{Sn}=-0.13 \mathrm{~V}$
6. Calculate the standard free energy change for the following reaction at $25^{\circ} \mathrm{C}, \mathrm{Au}(\mathrm{s})+\mathrm{Ca}^{+2}(1 \mathrm{M}) \rightarrow \mathrm{Au}{ }^{3+}(1 \mathrm{M})+\mathrm{Ca}(\mathrm{s})$, The electrode values are $\mathrm{Ca}^{2+} / \mathrm{Ca}=-2.87 \mathrm{~V}, \mathrm{Au}^{3+} / \mathrm{Au}=+1.50 \mathrm{~V}$. Predict whether the reaction will be spontaneous or not at $25^{\circ} \mathrm{C}$.
7. How do you account for conductivity of strong and weak electrolyte with concentration? Plot the graphs also.
8. State Kohlrausch law . Calculate Limiting molar conductivity of $\mathrm{NaCl}, \mathrm{HCl}$ and NaAc are $126.4,425.9 \& 91 \mathrm{SCm}^{2} \mathrm{~mol}^{-1}$. Calculate Limiting molar conductivity of HAc.
9. Resistance of conductivity cell filled with $0.1 \mathrm{molL}^{-1} \mathrm{KCl}$ solution is 100 ohm . If the resistance of the same cell when filled with $0.02 \mathrm{molL}^{-1} \mathrm{KCl}$ solution is 520 ohm . Calculate the conductivity \& molar conductivity of $0.02 \mathrm{molL}^{-1} \mathrm{KCl}$ solution. The conductivity of 0.1 molL^{-1} solution of KCl is $1.29 \mathrm{Sm}^{-1}$.
10. A Copper -silver is set up.The copper ion concentration in its is 0.10 M . The concentration of silver is not known. The cell potential measured 0.422 V . Determine the concentration of silver ion in the cell. $\mathrm{E}^{\circ} \mathrm{Ag}^{+} / \mathrm{Ag}^{2}=+0.80 \mathrm{~V}, \mathrm{E}^{\circ} \mathrm{Cu}^{2+} / \mathrm{Cu}=+0.34 \mathrm{~V}$.
11. A voltaic cell is set up at $25^{\circ} \mathrm{C}$ With the following half cells : $\mathrm{Al}(\mathrm{s}) / \mathrm{Al}^{3+}(0.001 \mathrm{M})$ and $\mathrm{Ni}^{2+}(0.50) / \mathrm{Ni}(\mathrm{s}), \mathrm{Write}$ the equation for the cell reaction that occurs when the cell generates an electric current and determine the cell potential (givenE ${ }^{\circ} \mathrm{Ni}^{2+} / \mathrm{Ni}^{=}=-0.25 \mathrm{~V}, \mathrm{E}^{\circ}{ }^{\circ} \mathrm{Als} / \mathrm{Al} 3+=-$ 1.66 V)
12. Write the reaction involved in the following cells: (a) Fuel Cell (b) Lead Storage Battery.
13. Three electrolytic cells $\mathrm{A}, \mathrm{B}, \mathrm{C}$ containing solutions $\mathrm{ZnSO}_{4}, \mathrm{AgNO}_{3}$, and CuSO_{4} respectively are connected in series .a Steady current of 1.5 amperes was respectively are connected in series .A steady current of 1.5 amperes was passed though them until 1.45 g of silver deposited at the cathode of cell B. How long did the current flow? What mass of copper and zinc were deposited?

Section D
14. Conductivity of 0.00241 M acetic acid is $7.896 \times 10^{-6} \mathrm{~S} \mathrm{~cm}^{-1}$. Calculate its molar conductivity. If \wedge^{0} for acetic acid is $390.5 \mathrm{~S} \mathrm{~cm}^{2} \mathrm{~mol}^{-1}$. What is its dissociation constant?
15. (a) Two half cell reactions of an electrochemical cell are given below:
$\mathrm{MnO}_{4}^{-}+8 \mathrm{H}^{+}+5 \mathrm{e}^{-} \rightarrow \mathrm{Mn}^{2+}+4 \mathrm{H}_{2} \mathrm{O} \quad \mathrm{E}^{\circ}=+1.51 \mathrm{~V}$ $\mathrm{Sn}^{2+} \rightarrow \mathrm{Sn}^{4+}+2 \mathrm{e}^{-} \mathrm{E}^{0}=+0.15 \mathrm{~V}$.
Construct the redox reaction from the two half cell reaction and predict if the reaction favours formation of reactants or product shown in the reaction
(b). How much electricity in terms of Faraday is required to produce (i) 20 g of Ca from molten CaCl_{2} (ii) 40 g of Al from molten AlCl_{3}

Chemistry Test Paper
UNIT: CHEMICAL KINETICS
M.M. 40

General Instructions:

(1) All questions are Compulsory.
(2)The question paper consists of 15 questions divided in to four sections $A, B, C \& D$
(3) Section A contains 2 questions of 1 mark each.

Section B contains 5 questions of 2 marks each.
Section C contains 6 questions of 3 marks each.
Section D contains 2 questions of 5 marks each.

1. Define Pseudounimolecular reaction?

Section-A

2. The decomposition reaction of ammonia gas on platinum surface has a rate constant $=2.3 \times 10^{-5} \mathrm{~L} \mathrm{~mol}^{-1} \mathrm{~s}^{-1}$. What is the order of the reaction?..

> Section-B
3. Mention the factors that affect the rate of a chemical reaction.
4. From the rate expression for the following reactions determine their order of reaction and dimensions of the rate constants.
a) $\mathrm{H}_{2} \mathrm{O}_{2}(\mathrm{aq})+3 \mathrm{I}^{-}(\mathrm{aq})+2 \mathrm{H}^{+} \rightarrow 2 \mathrm{H}_{2} \mathrm{O}(\mathrm{I})+3 \mathrm{I}^{-1} \quad$ Rate $=\mathrm{k}\left[\mathrm{H}_{2} \mathrm{O}\right]\left[\mathrm{I}^{-}\right]$
b) $\mathrm{CH}_{3} \mathrm{CHO}(\mathrm{g}) \rightarrow \mathrm{CH}_{4}(\mathrm{~g})+\mathrm{CO}(\mathrm{g})$

Rate $=\mathrm{k}\left[\mathrm{CH}_{3} \mathrm{CHO}\right]^{3 / 2}$
5. A reaction is first order in A and second order in B.
i) Write differential rate equation.
ii) How is the rate affected when concentration of B is tripled?
iii) How is the rate affected when the concentration of both A and B is doubled?
6. The decomposition of NH_{3} on platinum surface is zero order reaction. What are the rates of production of N_{2} and H_{2} if $\mathrm{k}=\mathbf{2 . 5 \times 1 0}$ ${ }^{4} \mathrm{~mol} \mathrm{~L}^{-1} \mathrm{~S}^{-1}$?
7. Derive the Integrated rate equation for first order reaction. also find half life period and plot the graph associated to it.

Section - C

8. For a first order reaction, show that time required for 99% completion is twice the time required for the completion of 90% of reaction.
9. A first order reaction has a rate constant $0.0051 \mathrm{~min}^{-1}$. If we begin with 0.10 M concentration of the reactant , what concentration of the reactant will be left after 3 hours.
10. The half-life for radioactive decay of ${ }^{14} \mathrm{C}$ is 5730 years. An archaeological
artifact containing wood had only 80% of the ${ }^{14} \mathrm{C}$ found in a living tree.

Estimate the age of the sample

11. What is the effect of temperature on the rate constant of a reaction? How can this temperature effect on rate constant be represented quantitatively?
12. The rate of a reaction quadruples when the temperature changes from 293 K to 313 K . Calculate the energy of activation of the reaction assuming that it does not change with temperature.
13. A first order reaction takes 40 min for $\mathbf{3 0 \%}$ decomposition. Calculate $\mathrm{t}_{1 / 2}$.

Section -D

14(a) Distinguish between order of reaction \& Molecularity.
(b) For a decomposition reaction the values of rate constant k at two different temperatures are given below: $k_{1}=2.15 \times 10^{-8} \mathrm{~L} \mathrm{~mol}^{-1} \mathrm{~s}^{-1}$ at $650 \mathrm{~K}, \mathrm{k}_{2}=2.39 \times 10^{-7} \mathrm{~L} \mathrm{~mol}^{-1} \mathrm{~s}^{-1}$ at 700 K Calculate the value of Activation Energy for this reaction.
15.(i) Write short notes on the following:
(a) Activation energy of a reaction (b)Elementary step in a reaction (c)Rate of a reaction
(ii) The following result has been obtained during the kinetic studies of the reaction
$2 \mathrm{~A}+\mathrm{B} \rightarrow \mathrm{C}+\mathrm{D}$

Experiment	$[A] \mathrm{mol} \mathrm{L}^{-1}$	$[B] \mathrm{mol} \mathrm{L}^{-1}$	Initial rate $\mathrm{mol} \mathrm{L}^{-1} \mathrm{~min}^{-1}$
I	0.1	0.1	6.0×10^{-3}
II	0.3	0.2	7.2×10^{-2}
III	0.3	0.4	2.88×10^{-1}
IV	0.4	0.1	2.40×10^{-2}

Determine the rate law and rate constant for the reaction

