1

3

4

5

6

7

8

9

p-block,A.K.SAMAL,PGT(Chem.)

Despite lower value of its electron gain enthalpy with negative sign, fluorine (F_2) is a stronger oxidising agent than CI_2 .

ANS: It is due to higher standard reduction potential of F_2 which is due to low bond dissociation energy of F—F bond due to inter electronic repulsion among small size F atoms, high electron gain enthalpy and highest hydration enthalpy.

2 Draw the structure of O_3 molecule.

Write one chemical reaction equation to show that SO₂ acts as a reducing agent.

ANS:
$$2H_2S(g) + SO_2(g) \xrightarrow{Fe_2O_3 \text{ catalyst}} 2H_2O(g) + 3S(s)$$

Write one chemical reaction equation to show that conc. H_2SO_4 is a strong oxidising agent.

ANS:
$$C + 2H_2SO_4(conc.) \rightarrow CO_2 + 2H_2O + 2SO_2$$

Complete the following reaction: Xe + PtF₆ \rightarrow

ANS: Xe + PtF₆ \rightarrow Xe⁺[PtF₆]⁻

Draw the structure of BrF5.

ANS: Square pyramidal

- Noble gases have very low boiling points. Why?
 - ANS: It is due to weak van der Waals' forces of attraction because they are nonpolar.
- Does the hydrolysis of XeF₆ lead to a redox reaction?

ANS: No, the products of hydrolysis are $XeOF_4$, XeO_2F_2 and XeO_3 where the oxidation states of all the elements remain the same as it was in the reacting state, therefore, it is not a redox reaction.

Fluorine exhibits only –1 oxidation state whereas other halogens exhibit +1, +3, +5, and +7 oxidation states also. Explain.

ANS: 'F' is the smallest in size and most electronegative element and does not have d-orbitals, therefore, it shows -1 oxidation only. It cannot show higher oxidation states due to absence of d-orbitals, whereas other halogens show +1, +3, +5, +7 oxidation states along with -1.

10 Draw the structures of the following molecules:

(i) XeF₂

(ii) HCIO₄

ANS:

(11)

HCIO₄ (Perchloric acid)

1

1

1

1

1

1

1

1

1

2

Draw the structure and predict the shape of (i) XeO₃ and (ii) BrF₃

ANS:

12 How would you account for the following: (i) Enthalpy of dissociation for F_2 is much less than that for Cl_2 . (ii) Sulphur in vapour state exhibits paramagnetism. (i) It is because interelectronic repulsion between valence electrons of F is more than Cl ANS: due to smaller size. (ii) It is due to presence of unpaired electron in sulphur like O_2 . 13 Assign a reason for each of the following statements: (i) P erchloric acid is a stronger acid than sulphuric acid. (ii) O f all the noble gases, only xenon is known to form established chemical compounds. (i) In HClO₄, 'Cl' is more electronegative than 'S' in H_2SO_4 . Secondly, Cl shows +7 ANS: oxidation state, whereas 'S' is in +6 oxidation state. (ii) Xe has larger size and high polarizing power and low ionisation enthalpy. 14 Assign a reason for each of the following statements: (i) SF₆ is not easily hydrolysed.

(ii) Hydrogen fluoride has a much higher boiling point than hydrogen chloride.

(i) It is because SF_6 is stable and inert. ANS:

(ii) HF is associated with intermolecular H-bonding, whereas HCl is not.

(i) Draw the structure of the species : CIO₄⁻

(ii) Give reasons: Xenon does not form fluorides, such as XeF₃ and XeF₅.

(i) Tetrahedral, $sp^{\$}$ hybridised (ii) [Xe(54)] has outer electronic configuration $6s^{2}6p^{6}$ ANS:

. . ..

65 On excitation, Xe will have unpaired electron in even numbers and not in odd, therefore, it shows +2, +4, +6 oxidation states and not +1, +3, +5. Hence XeF₃ and XeF₅ do not exist.

Complete the following equations:
(a)
$$SO_2 + MnO_4^- + H_2O \longrightarrow (b) F_2 + H_2O (l) \longrightarrow$$

(a) $5SO_2 + 2MnO_4^- + 2H_2O \longrightarrow 5SO_4^{2-} + 2Mn^{2+} + 4H^+$
ANS:
(b) $2F_2 + 2H_2O \longrightarrow 4H^+(aq) + 4F^-(aq) + O_2$.

Complete the following equations:

. ..

(a)
$$\operatorname{KClO}_3 \xrightarrow{\operatorname{heat}}$$
 (b) $\operatorname{XeF}_4 + \operatorname{H}_2 O \longrightarrow$
(a) $\operatorname{2KClO}_3 \xrightarrow{\operatorname{MnO}_2} \operatorname{2KCl} + \operatorname{3O}_2$
(b) $\operatorname{6XeF}_4 + \operatorname{12H}_2 O \longrightarrow \operatorname{4Xe} + \operatorname{2XeO}_3 + \operatorname{24HF} + \operatorname{3O}_2$

ANS:

11

15

16

17

2

2

2

2

Assign an appropriate reason for each of the following statements: (i) More metal fluorides are ionic in nature than metal chlorides.

(ii) SCI6 is not known but SF_6 is known.

18

ANS: (i) It is due to greater difference in electronegativity in fluorides than in chlorides. (ii) In SCI6, there is more repulsion than in SF_6 , therefore, SCI_6 does not exist.

19	Complete the following reaction equation: (i) $XeF_2(s) + H_2O(I) \rightarrow$ (ii) NaOH(cold & dilute) + Cl ₂ \rightarrow	2
	(i) $XeF_2 + H_2O \longrightarrow Xe + 2HF + \frac{1}{2}O_2$	
	(ii) $2NaOH + Cl_2 \longrightarrow NaCl + NaClO + H_2O$ ANS: (cold & dil)	
20	Complete the following reaction equation: (i) $XeF_4 + H_2O \rightarrow$ (ii) $Fe^{3+} + SO_2 + H_2O \rightarrow$	2
	(i) $6XeF_4 + 12H_2O \longrightarrow 4Xe + 2XeO_3 + 24HF + 3O_2$ (ii) $2Fe^{3+} + SO_2 + 2H_2O \longrightarrow 2Fe^{2+} + SO_4^{2-} + 4H^+$	
21	How would you account for the following: (i) Sulphur hexafluoride is less reactive than sulphur tetrafluoride. (ii) O f the noble gases only xenon forms known chemical compounds.	2
	ANS: (i) It is due to less repulsion in SF_6 as compared to SF_4 . (ii) It is due to large atomic size and high polarizing power and low ionisation enthalpy of Xenon.	1
22	Arrange the following in the order of property indicated against each set: (i) HF, HCl, HBr, HI – increasing bond dissociation enthalpy. (ii) H ₂ O, H ₂ S, H ₂ Se, H ₂ Te – increasing acidic character.	2
	ANS: (i) $HI < HBr < HCI < HF$ is the increasing order of bond dissociation enthalpy. (ii) $H_2O < H_2S < H_2Se < H_2Te$ is the increasing order of acidic character.	
23	What happens when: (i) Concentrated H ₂ SO ₄ is added to calcium fluoride; (ii) SO ₃ is passed through water?	2
	ANS: (i) $CaF_2 + H_2SO_4 \rightarrow CaSO_4 + 2HF$, Hydrogen fluoride is formed. (ii) $SO_3 + H_2O \rightarrow H_2SO_4$, Sulphuric acid is formed.	
24	Explain the following giving an appropriate reason in each case. (i) O_2 and F_2 both stabilize higher oxidation states of metals but O_2 exceeds F_2 in doing so. (ii) Structures of Xenon fluorides cannot be explained by Valence Bond approach.	2
	 ANS: (i) It is due to higher lattice energy of oxides as compared to fluorides as oxide ion is dinegative, whereas fluoride ion is mononegative. (ii) It is because Xe is noble gas and has lone pair of electrons in its d-orbitals. Size of 5d orbital in Xe is large enough for effective overlapping. 5p and 5d orbitals of Xe differ by 960 kJ mol⁻¹, that is sp₃d hybridisation, contribution of 5d orbital is objectionable. 	l
25	Explain the following facts giving appropriate reason in each case: (i) NF ₃ is an exothermic compound whereas NCI ₃ is not. (ii) All the bonds in SF ₄ are not equivalent.	2
	ANS: (i) It is because F_2 is stronger oxidising agent than Cl_2 , therefore, NF ₃ is exothermic compound, whereas NCl ₃ is endothermic. (ii) In SF ₄ , bonds are in different planes, therefore, they are not equivalent.	
26	How would you account for the following: (i) The following order of increase in strength of acids: $PH_3 < H_2S < HCI$	2

(ii) The oxidising power of oxoacids of chlorine follows the order: $HCIO_4 < HCIO_3 < HCIO_2 < HCIO$

(i) It is because greater the difference in electronegativity, more will be polarity and more ANS: will be acidic character.

(ii) It is because HCIO is least stable and gives [O] most easily, whereas tendency to give oxygen in HClO₄ is least where the number of oxygen is maximum and oxidising power is least.

Complete the following chemical equations:

(i)
$$6NaOH + 3Cl_2 \longrightarrow 5NaCl + NaClO_3 + 3H_2O$$

(hot and conc.)
(ii) $XeF_4 + O_2F_2 \xrightarrow{143 \text{ K}} XeF_6 + O_2$
(iii) $Br_2 + 3F_2 \longrightarrow 2BrF_3$
(excess)

ANS:

33

(a) Using VSEPR theory, predict the possible structures of the following: (i) XeF₂ (ii) XeO₃.

5

2

2

2

1

3

(b) (i) Why is SF₆ Kinetically inert?

(ii) Why is F₂ more reactive than Cl₂ inspite of chlorine has higher electron gain enthalpy than fluorine?

(iii) Why is HF weaker acid than HCI?

ANS: (a) (i) XeF_2 — linear (ii) XeO_3 — Pyramidal

(b) (i) Because sulphur is sterically

protected by six 'F' atoms.

- (ii) Bond dissociation enthalpy of F_2 is lower than that of CI_2 involved in the process.
- (iii) Bond dissociation enthalpy of HCl is lower than that of HF.

Among the following, which one is a wrong statement.

(a) PH_5 and $BiCl_5$ do not exist.

(b) $p\pi$ -d π bonds are present in SO₂.

(c) SeF_4 and CH_4 have same shape.

(d) I_3 has bent geometry.

ANS: (c) SeF₄ has see-saw shape where as CH_4 is tetrahedral

35

34

In which of the pair of ions, both species contain S—S bond? (a) $S_4O_6^{2-}$, $S_2O_3^{2-}$ (b) $S_2O_7^{2-}$, $S_2O_8^{2-}$ (c) $S_4O_6^{2-}$, $S_2O_7^{2-}$ (d) $S_2O_7^{2-}$, $S_2O_3^{2-}$ (a) $S_4O_6^{2-}$, $S_2O_7^{2-}$ (d) $S_2O_7^{2-}$, $S_2O_3^{2-}$ (a) $S_4O_6^{2-}$, $S_2O_7^{2-}$ (c) $S_2O_7^{2-}$, $S_2O_3^{2-}$ (b) $S_2O_7^{2-}$, $S_2O_3^{2-}$

36

Which one of the following order is correct for the bond dissociation enthalpy of halogen molecule? (a) $Br_2 > I_2 > F_2 > Cl_2$ (b) $F_2 > Cl_2 > Br_2 > I_2$ (c) $I_2 > Br_2 > Cl_2 > F_2$ (d) $Cl_2 > Br_2 > F_2 > I_2$

ANS: (d) In F₂, therefore, inter electronic repulsion, therefore, bond dissociation enthalpy is less.

Which is strongest acid in the following:(a) HClO₄ (b) H₂SO₃

(c) H_2SO_4 (d) $HCIO_3$

ANS: (a) HClO₄ is strongest because 'Cl' has +7 oxidation state

38

In which of the following pairs, the two species are isostructural

(c)
$$BrO_3$$
 and XeO_3 (d) SF_4 and XeF_3

ANS: (c) Both are pyramidal.

39 The correct order of oxidising power is (a) $HCIO_4 > HCIO_3 > HCIO_2 > HCIO$ (b) $HOCI > HCIO_2 > HCIO_3 > HCIO_4$ (c) $HCIO_3 > HCIO_4 > HCIO_2 > HCIO$ (d) $HCIO_2 > HOCI > HCIO_3 > HCIO_4$ 1

1

1

1

ANS: (b) HOCI \rightarrow HCI + [O] It is strongest oxidising agent whereas HCIO₄ is weakest. 40 The correct order of acid strength is (a) $HCIO_4 < HCIO_3 < HCIO_2 < HCIO$ (b) $HCIO < HCIO_2 < HCIO_3 < HCIO_4$ 1 (c) $HCIO_4 < HCIO < HCIO_2 < HCIO_3$ (d) $HCIO_2 < HCIO_3 < HCIO_4 < HCIO$ ANS: (b) As oxidation state increases, acid strength increases. 41 Among the following which is strongest oxidising agent. (a) Br_2 (b) I_2 1 (c) Cl₂ (d) F₂ ANS: (d) F₂ is best oxidising agent. 42 (a) $Cl_2O < ClO_2 - ClO_2$ (b) $ClO_{7} < Cl_{7} < Cl_{7}$ 1 (c) $Cl_2O < ClO_2 < ClO^-$ (d) $ClO_2 < Cl_2O < ClO_2^{-1}$ The correct order of bond angles in the following species is (b) $Clo_2^- < Cl_2O < Clo_2$ is increasing order of bond angle. ANS: 43 Sulphur trioxide can be obtained by which of the following: (a) $CaSO_4 + C \xrightarrow{\Delta} (b) Fe_2(SO_4)_3 \xrightarrow{\Delta}$ 1 (c) $S + H_2SO_4 \longrightarrow$ (d) $H_2SO_4 + PCl_5 \longrightarrow$ (b) $\operatorname{Fe}_2(\operatorname{SO}_4)_3 \xrightarrow{\Delta} \operatorname{Fe}_2\operatorname{O}_3 + 3\operatorname{SO}_3$ ANS: 44 When Cl₂ reacts with hot and conc. NaOH, the oxidation number of chlorine changes from (a) zero to +1 and zero to +5 (b) 0 to -1 and 0 to +5 1 (c) zero to -1 and zero to +3 (d) 0 to +1 and 0 to -3 ANS: (b) CI_2 has oxidation number 0, in $CI^{-}(-1)$ and in $CIO_3^{-}(+5)$. $3Cl_2 + 6NaOH$ (hot and conc.) $\rightarrow 5NaCl + NaClO_3 + 3H_2O$ Acidity of diprotic acid in aqueous solution increases in the order. 45 (a) $H_2S < H_2Se < H_2Te$ (b) $H_2Se < H_2S < H_2Te$ 1 (c) $H_2Te < H_2S < H_2Se$ (d) $H_2Se < H_2Te < H_2S$ ANS: (a) Because bond dissociation enthalpy decreases as atomic size increases. 46 Chlorine reacts with excess of NH₃ to form (a) NH₄Cl (b) N₂ + HCl 1 (c) N_2 + NH_4CI (d) NCI_3 + HCI(c) $8NH_3 + 3CI_2 \rightarrow 6NH_4CI + N_2$ ANS: Which of the following reactions is an example of redox reaction? 47 (a) $XeF_4 + O_2F_2 \longrightarrow XeF_6 + O_2$ (b) $\operatorname{XeF}_2 + \operatorname{PF}_5 \longrightarrow [\operatorname{XeF}]^+ [\operatorname{PF}_6]^-$ 1 (c) $XeF_6 + H_2O \longrightarrow XeOF_4 + 2HF$ (d) $XeF_6 + 2H_7O \longrightarrow XeO_7F_7 + 2HF$ (a) Redox reaction becaue Xe(+4) is getting oxidised to Xe(+6) and O(+1) is reduced to zero. $\begin{array}{c} \operatorname{XeF}_4 + \operatorname{O}_2 \operatorname{F}_2 \longrightarrow \operatorname{XeF}_6 + \operatorname{O}_2 \\ +4 & +1 & +6 & 0 \end{array}$ ANS:

48 On addition of conc. H₂SO₄ to a chloride salt, colourless fumes are evolved but in case of iodide salt, violet fumes come out. This is because (a) H₂SO₄ reduces HI to I₂ (b) HI is of violet colour 1 (c) HI gets oxidised to I₂ (d) HI changes to HIO₃ ANS: (c) HI gets oxidised to I_2 49 Which of the following pairs of ions are isoelectronic and isostructural? (a) CO_3^{2-} , NO_3^{-} (b) CIO_3^{-} , CO_3^{2-} (c) SO_3^{2-} , NO_3^{-} (d) CIO_3^{-} , SO_3^{2-} 1 (a) CO₃²⁻ and NO₃⁻ are isoelectronic (32 electrons) and and and ANS: Affinity for hydrogen decreases in the group from fluorine to iodine. Which of the halogen acids 50 should have highest bond dissociation enthalpy? (a) HF (b) HCl 1 (c) HBr (d) HI ANS: (a) HF has highest bond dissociation enthalpy due to smaller bond length. Bond dissociation enthalpy of E-H (E = element) bonds is given below. Which of the compounds 51 Compound NH₃ PH₃ AsH₃ SbH₃ Δ_{diss} (E---H)/kJ mol⁻¹ 389 297 322 255 1 (a) NH₃ (b) PH₃ will act as strongest reducing agent? (c) AsH₃ (d) SbH₃ ANS: (d) SbH₃ due to lowest bond dissociation enthalpy. 52 Hot conc. H₂SO₄ acts as moderately strong oxidising agent. It oxidises both metals and nonmetals. Which of the following element is oxidised by conc. H_2SO_4 into two gaseous products? (a) 1 Cu (b) S (c) C (d) Zn ANS: (c) C + $2H_2SO_4(conc.) \rightarrow CO_2 + SO_2 + 2H_2O_2$ 53 Which of the following options are not in accordance (a) $F_2 > CI_2 > Br_2 > I_2$ Oxidising power. (b) MI > MBr > MCI > MFIonic character of metal halide. 1 (c) $F_2 > Cl_2 > Br_2 > l_2$ Bond dissociation enthalpy. (d) HI < HBr < HCl < HF Hydrogen-halogen bond strength. with the property mentioned against them? (b) MF > MCl > HBr > MI lonic character ANS: (c) $CI_2 > Br_2 > F_2 > I_2$ Which of the following statements are correct? [NCERT Exemplar Problem] 54 (a) Among halogens, radius ratio between iodine and fluorine is maximum. (b) Leaving F—F bond, all halogens have weaker X—X bond than X—X' bond in interhalogens. 1 (c) Among interhalogen compounds maximum number of atoms are present in iodine fluoride. (d) Interhalogen compounds are more reactive than halogen compounds. (a), (c) and (d) are correct. F_2 is more reactive than interhalogen compounds. ANS: (b) is not correct, other halogens are less reactive than interhalogen compounds. Which of the following statements are correct for SO₂ gas? [NCERT Exemplar Problem] 55 (a) It acts as bleaching agent in moist conditions. 1 (b) It's molecule has linear geometry.

(c) It's dilute solution is used as disinfectant.

(d) It can be prepared by the reaction of dilute H_2SO_4 with metal sulphide.

ANS:
$$Na_2S + H_2SO_4 \longrightarrow Na_2SO_4 + H_2S$$

56

57

Which of the following orders are correct as per the properties mentioned against each? (a) $As_2O_3 < SiO_2 < P_2O_3 < SO_2$ Acid strength.

1

1

1

1

(b) $AsH_3 < PH_3 < NH_3$ Enthalpy of vapourisation.

(c) S < O < CI < F More negative electron gain enthalpy.

(d) $H_2O > H_2S > H_2Se > H_2Te$ Thermal stability.

ANS: (a) and (d) are correct (b) and (c) are wrong. (b) $PH_3 < AsH_3 < NH_3$

Match the compounds given in Column I with the hybridisation and shape given in Column II and mark the correct option.

Column I Column II

(A) Xe F_6 (1) sp_3d_3 – distorted octahedral

(B) Xe O_3 (2) sp_3d_2 - square planar

(C) Xe OF_4 (3) sp₃ - pyramidal

(D) Xe F_4 (4) sp₃ d₂ - square pyramidal

Code:

(a) A (1) B (3) C (4) D (2)

(b) A (1) B (2) C (4) D (3)

(c) A (4) B (3) C (1) D (2)

(d) A (4) B (1) C (2) D (3)

ANS: (a) A (1) B (3) C (4) D (2)

Match the items of Columns I and II and mark the correct option.

Column I Column II

(A) H₂SO₄ (1) Highest electron gain enthalpy

(B) CCl₃NO₂ (2) Chalcogen

(C) Cl₂ (3) Tear gas

(D) Sulphur (4) Storage batteries

Code:

(a) A (4) B (3) C (1) D (2)

(b) A (3) B (4) C (1) D (2)

(c) A (4) B (1) C (2) D (3) (d) A (2) B (1) C (3) D (4)

ANS: (a) A (4) B (3) C (1) D (2)

In the following questions a statement of assertion followed by a statement of reason is given. Choose the correct answer out of the following choices. (Q.27 to Q.29)

(a) Both assertion and reason are correct statements, and reason is the correct explanation of the assertion.

(b) Both assertion and reason are correct statements, but reason is not the correct explanation of the assertion.

(c) Assertion is correct, but reason is wrong statement.

(d) Assertion is wrong but reason is correct statement.

(e) Both assertion and reason are wrong statements.

Assertion: HI cannot be prepared by the reaction of KI with concentrated H₂SO₄ Reason: HI has lowest H–X bond strength among halogen acids.

8

59

ANS: explana	(b) Both assertion and reason are correct statements, but reason is not the correct ation of the assertion. HI gets oxidised to I_2 as $H_2SO_4(conc.)$ is oxidising agent.	
In the fo Choose (a) Both	ollowing questions a statement of assertion followed by a statement of reason is given. the correct answer out of the following choices. (Q.27 to Q.29) a assertion and reason are correct statements, and reason is the correct explanation of the	e
(b) Both	n assertion and reason are correct statements, but reason is not the correct explanation of ertion	
(c) Asse	ertion is correct, but reason is wrong statement.	1
(d) Asse (e) Both	ertion is wrong but reason is correct statement. n assertion and reason are wrong statements. Assertion: Both rhombic and monoclinic	
sulphur	exist as S_8 but oxygen exists as O_2 .	
Reason pπ bono	h: Oxygen forms $p\pi - p\pi$ multiple bond due to small size and small bond length but $p\pi -$ ding is not possible in sulphur.	
ANS: explana	(a) Both assertion and reason are correct statements, and reason is the correct ation of the assertion.	
In the fo Choose (a) Both	ollowing questions a statement of assertion followed by a statement of reason is given. The correct answer out of the following choices. (Q.27 to Q.29) In assertion and reason are correct statements, and reason is the correct explanation of the	•
assertio (b) Both	on. n assertion and reason are correct statements, but reason is not the correct explanation of	
(c) Asse	ertion is correct, but reason is wrong statement.	1
(d) Asse	ertion is wrong but reason is correct statement.	
(e) Both	n assertion and reason are wrong statements. Assertion: NaCl reacts with concentrated	
areenis	h vellow.	
Reason	n: MnO ₂ oxidises HCI to chlorine gas which is greenish yellow.	
ANS: explana NaCl + 4HCl +	(a) Both assertion and reason are correct statements, and reason is the correct ation of the assertion. $H_2SO_4(conc.) \rightarrow NaHSO_4 + HCI$ $MnO_2 \rightarrow MnCl_2 + Cl_2 + 2H_2O$	
The mix	xture of conc. HCl and anhydrous ZnCl ₂ is called	1
ANS:	Lucas reagent	
Out of H	H_2O and H_2S which has higher bond angle?	1
ANS:	H ₂ O	
Tin read	cts with excess of chlorine gas to form	1
ANS:	SnCl ₄	
Lead su	ulphide is heated with air to form	1
ANS:	PbO + SO ₂	
I ₂ gets o	oxidised to by conc. HNO_3 .	1
ANS:	HIO ₃	
Interhal	logen compounds are more reactive than helogens except fluorine. [True/False]	1
ANS:	True. It is due to less effective overlapping.	
CIF is n	neutral molecule isoelectronic with CIO ⁻ . [True/False]	1
ANS:	True. Both have 17 + 9 = 26 electrons.	
NaF rea	acts with SbF ₆ to form Na ⁺ [SbF ₇] ⁻ .[True/False]	1
ANS:	It is true. NaF + XeF ₆ \rightarrow Na+ $[XeF_7]^{\Theta}$	
	-	

70	Hydrolysis of XeF_6 is redox reaction. [True/False]	1
	ANS: It is false. $XeF_6 + 3H_2O \rightarrow XeO_3 + 6HF$.	
71	Ozone is thermodynamically less stable than O ₂ . [True/False]	1
	ANS: True	
72	Sulphur trioxide when dissolved in H_2SO_4 , the product formed is (a) H_2SO_3 (b) H_2SO_5 (c) $H_2S_2O_7$ (d) $H_2S_2O_8$	1
	ANS: (c) $H_2SO_4 + SO_3 \rightarrow H_2S_2O_7$	
73	Among the following which one exhibits both +ve and –ve oxidation states (a) Cs (b) F (c) K (d) I	1
	ANS: (d) I shows both positive and negative oxidation states.	
74	Which of the following has highest boiling point? (a) Kr (b) Xe (c) He (d) Ne	1
	ANS: (b) Xe has highest boiling point due to more surface area, more van der waals' forces of attraction, hence higher boiling point.	
75	Which of the following is most reactive? (a) I ₂ (b) ICI (c) CI ₂ (d) Br ₂	1
	ANS: (b) ICI is most reactive due to low bond dissociation enthalpy as it has least effective overlapping.	
76	 In the preparation of compounds of Xe, Bartlett had taken O₂⁺ Pt F₆⁻ as a base compound. This is because [NCERT Exemplar Problem] (a) both O₂ and Xe have same size. (b) both O₂ and Xe have same electron gain enthalpy. (c) both O₂ and Xe have almost same ionisation enthalpy. (d) both Xe and O₂ are gases. 	1

ANS: (c) both O_2 and Xe have almost same ionisation enthalpy

77 Reduction potentials of some ions are given below. Arrange them in decreasing order of oxidising

1011	CIO ₄	104	BrO_4^-
$\begin{array}{c c} \textbf{Reduction} \\ \textbf{potential} \\ \textbf{E}^{\Theta}/\textbf{V} \end{array} \\ \end{array} \\ \end{array}$	[⊖] =1.19V	$E^{\Theta} = 1.65 \mathrm{V}$	$E^{\Theta} = 1.74 V$

[NCERT Exemplar Problem]

(a)
$$ClO_4^- > IO_4^- > BrO_4^-$$
 (b) $IO_4^- > BrO_4^- > ClO_4^-$

power. (c)
$$BrO_4^- > IO_4^- > ClO_4^-$$
 (d) $BrO_4^- > ClO_4^- > IO_4^-$

ANS: (c) Higher the reduction potential better will be oxidising agent.

78

79

(a) ICl ₂ , ClO ₂	(b) BrO_2^- , BrF_2^+	
(c) ClO ₂ , BrF	(d) CN ⁻ , O ₃	1

1

1

Which of the following is isoelectronic pair?

(b) $\operatorname{BrO}_2^-(35 + 16 + 1 = 52)$ $\operatorname{BrF}_2^+(35 + 9 + 9 - 1 = 52)$

ANS:

In which of the following reactions conc. H_2SO_4 is used as an oxidising reagent? (a) $CaF_2 + H_2SO_4 \rightarrow CaSO_4 + 2HF$ (b) $2HI + H_2SO_4 \rightarrow I_2 + SO_2 + 2H_2O$ (c) $Cu + 2H_2SO_4 \rightarrow CuSO_4 + SO_2 + 2H_2O$ (d) $NaCl + H_2SO_4 \rightarrow NaHSO_4 + HCl$

ANS: (b) and (c) Cu is getting oxidised to CuO which reacts with H_2SO_4 to form CuSO₄ and H_2O and H_2SO_4 gets reduced to SO₂.

80 Which of the following statements are true? [NCERT Exemplar Problem]

(a) Only type of interactions between particles of noble gases are due to weak dispersion forces.

1

1

1

- (b) Ionisation enthalpy of molecular oxygen is very close to that of xenon.
- (c) Hydrolysis of XeF_6 is a redox reaction.

(d) Xenon fluorides are not reactive.

ANS: (a) and (b) are true, (c) $XeF_6 + 3H_2O \rightarrow XeO_3 + 6HF$ is not a redox reaction. Xenon fluorides are reactive due to low bond dissociation enthalpy.

Match the items of Columns I and II and mark the correct option.Column IColumn II(A) Its partial hydrolysis does not change oxidation state of central atom(1) He(B) It is used in modern diving apparatus(2) XeF6(C) It is used to provide inert atmosphere for filling electrical bulbs(3) XeF4(D) Its central atom is in sp³d² hybridisation(4) Ar

Code:

81

(a) A (1) B (4) C (2) D (3) (b) A (1) B (2) C (3) D (4)

(c) A (2) B (1) C (4) D (3)

(d) A (1) B (3) C (2) D (4)

ANS: (c) A (2) B (1) C (4) D (3)

82 In the following question a statement of assertion followed by a statement of reason is given. Choose the correct answer out of the following choices.

(a) Both assertion and reason are correct statements, and reason is the correct explanation of the assertion.

(b) Both assertion and reason are correct statements, but reason is not the correct explanation of the assertion.

(c) Assertion is correct, but reason is wrong statement.

(d) Assertion is wrong but reason is correct statement.

(e) Both assertion and reason are wrong statements.

Assertion: SF₆ cannot be hydrolysed but SF₄ can be.

Reason: Six F atoms in SF₆ prevent the attack of H₂O on sulphur atom of SF₆.

ANS: (a) Both assertion and reason are correct statements, and reason is the correct explanation of the assertion.

83	NaBr reacts with H_3PO_4 to form and	1
	ANS: Na ₃ PO ₄ + HBr	
84	Xe reacts with O ₂ F ₂ at low temperature to form and	1
	ANS: $XeF_2 + O_2$	
85	Cu does not react with dil. H ₂ SO ₄ . [True/False]	1
	ANS: True	
86	Sucrose on reaction with conc. H_2SO_4 gives sugar charcoal. [True/False]	1
	ANS: True	
87	CuSO ₄ .5H ₂ O reacts with conc. H_2SO_4 and becomes dirty white. [True/False]	1
	ANS: True	